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ABSTRACT 
 
Increasing availability of cropland geospatial data are providing farmers with 

opportunities but also challenges in interpreting these data for precision cropland 
management decisions. The objective of this study is to evaluate spatial variability and 
precision management decisions using mapping technology in dryland cropping system.  
The study was initiated in 2018 in Akron, Colorado on field size plots ranged from 2.4 to 
4.5 ha (6-11 acres) with substantial production variability.  The cropping system consists 
of (i) Business-As-Usual (BAU) management with wheat-fallow cropping under reduce 
tillage (WF-RT) and (ii) Aspirational (ASP) with four-year cropping of winter wheat-corn-
millet-flex under no tillage (WCMFlex-NT). Each phase of each rotation was included in 
each year of the study with three replications. Soil samples in each field were taken in a 
30-m (100-ft) georeferenced grid.  Two or three management zones were defined in each 
field by yield, soil properties, and elevation.  Veris-EC/pH was used as a tool to evaluate 
some aspects of soil properties.  Two eddy covariance towers were installed to estimated 
carbon and water fluxes. High-resolution topographical maps reveal elevation changes of 
more than 2 m (6.5 ft) in some fields.  Yield differences between high and low yielding 
zones within each field varied by as much as 135 bu ac-1 (8.5 Mg ha-1) for corn and 85 bu 
ac-1 (5.3 Mg ha-1) for wheat.  Preliminary geospatial analyses are showing promise in 
guiding precision farming decisions and could provide a unique opportunity to dryland 
farmers for optimizing crop production, reducing inputs, and enhancing economic return 
in the central Great Plains Region.    

 
INTRODUCTION 

  
Precision Agriculture is a farming concept that accounts for spatial and temporal 

variability in crop production and soil resources.  This can be done by using global 
positioning system (GPS) to coordinate collection of soil, site, and plant information; 
generating maps and relationships between spatial variability of soil and site properties 
in correlation with crop yield; and applying those relationships to guide variable-rate inputs 
for seed, fertilizer, and pesticides. The increase in world’s population and the demand for 
food and fiber challenge the agriculture industry to increase food production, maximize 
profits, and conserve available resources. Adaptation of precision farming strategy may 
help increase food production, reduce inputs, enhance resource use efficiency, and 
improve economic return (Franzen and Mulla, 2016).   

The usage of Unmanned Aerial Vehicles (UAV) technology with high resolution 
imaging equipment assists researchers and producers to identify spatial variability of key 
factors in the field and apply appropriate management strategies.  The UAV provides 
assessments of crop yield, crop water and nutrient stress, weed problems, insect and 



 

pathogen infestation, soil characteristics, and other field conditions, all of which can 
contribute to maximize land sustainability (Olson and Anderson, 2020). The spectral 
cameras in these UAV can be used to identify crop stand count (Torres-Sánchez et al., 
2015), weed detection (Hansen et al., 2013), and biotic stress detection (Bock et al., 
2008). The incorporation of remote sensors and UAV technology allow plant breeders 
and researchers to gather phenotypic information quickly and efficiently for making 
management decision that enhance production (Yang et al., 2017). Crop yield and quality 
assessment, for a specific year, can be influenced by crop genetics, weather pattern,  soil 
nutrients, and land management decisions (Raun et al., 2001).  The usage of UAV-based 
imagery have enhanced crop assessment accuracy (Mekonnen et al., 2020) due to real 
time evaluation of crop progress though the life cycle (Ballester et al., 2017).   

Soil water is the most limiting factor for crop production in dryland agricultural 
systems. Monitoring crop water stress with UAV technology can assess fluctuations in 
crop water needs throughout the season (Santestaban et al., 2017) and allow for 
improved irrigation scheduling (Crusiol et al., 2019) Crop nutrients such as nitrogen (N), 
phosphorus (P), and potassium (K) are essential for crop production and are applied 
regularly to soil. Crop nutrient-use efficiency could vary from year to year depending on 
water availability and ambient temperature. Insufficient synchronization between crop 
nutrient needs and available soil nutrients may cause deficiencies or lead to leaching of 
nutrients with harmful effects on the environment (Olson and Anderson, 2020). The UAV 
can be equipped with spectral sensors for crop nutrient assessments to indirectly assess 
real-time nutrient deficiencies (Liu et al., 2018). This also could improve estimates of 
fertilizer requirements and associated costs (Olson and Anderson, 2020). 

In precision agriculture, mapping soil characteristics is important for management 
decisions due to spatial soil heterogeneity (Govers et al., 2013).  The UAV provides 
precise and high-resolution soil mapping, which helps with enhanced input efficiency. 
Veris instrument that use measured soil electrical conductivity (EC) to estimate soil 
properties that can be transferred into maps (Pei et al, 2018; Azhar et al., 2021).  Soil 
properties informed by Veris data may include soil organic carbon (SOC), total nitrogen 
(TN), moisture, soil texture (clay, silt, and sand), cation exchange capacity (CEC), calcium 
(Ca), magnesium (Mg), potassium (K), and pH (Pei et al., 2018). 

The semiarid region of the Great Plains exhibit erratic weather patterns with low 
precipitation, high evaporation, and high temperature during summer months. The 
production in dryland cropping systems of this region depends on soil water storage that 
is influenced by land topography, cropping intensity, and tillage practices (Kühling et al., 
2017).  There is an information gap linking land topography, soil water storage, crop soil 
water availability, soil properties, and crop yield (Brown et al., 2020).  The objective of this 
study is to evaluate precision management decisions for enhancing land productivity in 
dryland cropping system in Akron, Colorado. In this report we will focus on precision 
technologies in relation to productivity.  

 
MATERIALS AND METHODS 

 
The precision management approach initiated in 2018 at Akron, CO on field size 

plots that exhibited high degree of variability in crop production, soil nutrients, and soil 
water content.  Two management practices have been implemented: (i) Business-as-



 

Usual (BAU) that consist of wheat-fallow rotation with reduce tillage (WF-RT) and (ii) 
Aspirational (ASP) that consist of a four-year rotation with winter wheat-corn-millet-
fallow/flex (WCMFlex) and no-tillage.  The choice between fallow and an appropriate crop 
(flex) in the fourth year will depend on the available soil moisture at planting for that year.  
Each phase of rotation is included in each year with 3 replications. The field plots size 
ranged from 6-11 acres (2.4-4.5 ha).  Average annual precipitation over the previous 29 
years (1991-2020) was 16.2 inches (410.5 mm).  In 2018, soil samples were taken using 
a gridded sampling design of 100 ft x 100 ft equidistant spacing with georeferenced grid 
points to generate field maps (Figure 1).  Soil samples were taken from 0-6 inches (0-15 
cm) and 6-12 inches (15-30 cm) depth.  

 
 
 
 
 
 
 
 

 
 

 
Soil samples were analyzed for chemical properties such as EC, pH, N, P, K, 

organic matter.  Crop yield was evaluated using yield combine harvester equipped with 
georeferenced instrument to establish yield maps.  Crop yield in each field plot was 
organized in three zones (High, Medium, and Low) by yield, soil properties, and elevation.  
Soil moisture is being evaluated using neutron probe measurements from two tubes 
installed in each zone within the same field (Figure 2). Correlation among different 
parameters (yield, soil nutrients, soil water content, etc.) and crop yield was evaluated 
using Random Forest models. 

 
RESULTS AND DISCUSSION   

 
Field plots varied in land elevation (Figure 3).  The differences in elevations within the 
same field plot ranged between 7-10 ft (2.1-3.0 m) with BAU and ASP.  In 2019 corn and 
wheat yield ranged from 25.0 bu/ac in the low yielding zone to 160 bu/ac in some high 
yielding zone for corn and 110 bu/ac for wheat (Figure 4). The yield differences between 
the high and the low yielding zones was about 135 bu/ac (8.5 Mg ha-1) for corn and 85 
bu/ac (5.3 Mg ha-1) for wheat.  This represents about 8.5 Mg/ha differences with corn 
yield and 5.3 Mg/ha for wheat yield within the same field plot.  Yield in each field plot 
exhibited 7 zones blended with each other (Figure 4) which could cause some 
management challenges regarding inputs.  Therefore, organizing the field plot into three 
management zones may help with improving field management efficiency. 

Figure 1.  Soil sampling points diagram.  
Soil samples were taken using grid of 
100 ft x 100 ft equidistant spacing and 
georeferenced each grid point. 

Figure 2.  Diagram of the neutron 
tubs installed in each field plots at 
low, medium, and high yield zones.  
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The 2019 yield data were correlated with field elevation (Figure 3 and 4).  The 
higher elevation areas of the field exhibited lower yield, while the yield decreased with 
elevation.  The yield dynamic for corn and wheat was expected because soil water is the 
most limiting factor in dryland system.  Land topographies contribute to soil differences, 
soil water differences, and nutrients differences, as nutrients are transported from higher 
elevation to lower elevation area of the field.  This process can translate into enhanced 
yield in the low elevated section of the field plot compared with high elevated section of 
the field. Topography is just a surrogate parameter, however, so the next step is to 
differentiate the contribution of each of these factors, and others, to the observed yield 
differences.    

The influence of different parameters studied on crop yield were evaluated using 
Random Forest models (Figure 5).  These preliminary data showed elevation to be the 

Figure 4.  Wheat (blue color) and corn (green color) yield variability within the field plot 
associated with Business-as-Usual (BAU) and Aspirational (ASP) management 
decisions.  

Figure 3.  Variability in some field 
plot elevation associated with 
Business-as-Usual (BAU) and 
Aspirational (ASP) management 
decisions.  
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most influential factor on crop yield. This could be related to soil water and nutrient 
availability in this dryland cropping system.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CONCLUSIONS 

 
The data collection and usage of precision technologies and analyses for soil 

nutrients, crop monitoring, and field mapping will be continued till 2023.  This 
information could improve the application of precision farming in this region.   Overall, 
this project provides a unique opportunity to evaluate precision farming practices for the 
dryland cropping system in the Central Great Plains Region.  
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