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ABSTRACT 
 

It is estimated that 2,000 ha of cropland are taken out of production daily worldwide due 
to salinization and sodification. Salinity is estimated to result in economic losses of $27.3 billion 
U.S. dollars annually. Our project aims to jointly develop techniques for quantifying the severity 
of soil-water salinity and impacts on crop production on surface-irrigated fields in Pakistan’s 
Indus River Valley and the Lower Arkansas River Valley (LARV) in Colorado. The Fairmont 
Drainage District study site in the LARV is a furrow-irrigated, tile-drained area of about 200 ha 
that suffers from salt-affected (primarily gypsum) soils due to shallow water tables resulting 
from inefficient irrigation practices and inadequate drainage. The objective of this study was to 
model crop relative (Yr) and absolute yield using two traditional and two alternative approaches 
with electromagnetic induction derived bulk apparent soil electrical conductivity (ECa; 0 – 1.5m 
depth), and saturated paste extract electrical conductivity (ECe) used as inputs, and compare 
results. The first method is a traditional piecewise linear approach where ECe predicts Yr using a 
salinity tolerance threshold, and a sensitivity to accrued salinity. The second involved a 
“modified discount function” that utilized a single empirical parameter to fit a sigmoidal function 
relating Yr to ECe. The third and fourth methods were purely empirical linear and sigmoidal four 
parameter logistic (4PL) models that used ECa or ECe to predict Yr. Results showed that the 
empirical sigmoidal 4PL model yielded the greatest accuracy for 190 field data points using ECa 
and ECe as the predictor, with a root mean squared error of ±16.71 % and ±14.37 %, 
respectively. This suggests that ECa is an effective predictor of Yr for this dataset, indicating that 
it might not be necessary to collect and analyze soil samples for ECe when trying to map salinity 
impacts on maize yield when it is known that salinity is the primary yield reducing factor; this 
would save time, labor, and resources.  The fitted Yr -ECe regression relationships, however, 
indicate that the threshold ECe value at which significant maize yield loss commences for these 
gypsum soils is markedly higher than the value reported for halite soils by Maas and Hoffman 
(1977). 

 
INTRODUCTION 

 
Salt-affected and waterlogged soils exist as a growing global problem for agricultural 

production. These are defined as soils in which salts are in enough quantity to interfere with 
normal plant growth. The Harmonized World Soil Database (Nachtergaele et al., 2009) estimates 
the global extent of salt-affected land to be 1128 Mha, 60% of which is saline, 26% is sodic, and 
the remaining 14% is saline sodic. It is estimated that 2000 ha worldwide are taken out of 
production every day due to salinization and sodification (Nellemann, 2009; Qadir et al., 2014).  
This salinity impact was estimated to have an economic impact of $27.3 billion U.S. dollars 
annually (Qadir et al., 2014). These economic and environmental issues will only be magnified 
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as the area of salt-affected soils expands each year as intensive irrigation practices continue 
globally. 

Salt tolerance of a crop is traditionally described through plotting a crop’s relative yield 
as a continuous function of soil salinity. Relative yield (Yr) is used to circumvent differences in 
absolute yield (Y) due to differences in crop species, cultivar, ambient environment, soil fertility, 
pest damage, and factors other than salinity. The conventional method to convert Y into Yr 
involves scaling each observation of Y by the maximum yield observed (Ym) (Grieve et al., 
2013). Various models have been attempted to accurately describe this phenomenon (Steppuhn 
et al., 2005). Each model, although different in form, require the average root zone salinity (C), 
where C can be expressed as solute concentration (Cs), osmotic potential (Ψo), saturated paste 
electrical conductivity (ECe), or the electrical conductivity of irrigation water (ECw). 

One of the most popular methods used for the accurate quantification of soil salinity on 
field and regional scales is through electromagnetic induction (EMI) techniques that calibrate 
apparent soil electrical conductivity (ECa) to other edaphic physical and chemical properties. In 
cases where ECa correlates with a soil property of interest, an ECa – directed sampling strategy 
has been found successful in quantifying the spatial distribution and variability of that soil 
property, all while minimizing the number of sample locations, keeping the lab and labor costs to 
a minimum (Corwin et al., 2003a; Shaner et al., 2008).  Furthermore, it has been shown that if 
ECa correlates with crop yield, these directed sampling approaches can be used to identify soil 
properties that are causing yield variability, and thus direct management decisions for 
remediation (Corwin et al., 2003b).  

Correlating yield with ECa directly has been met with uncertainty, as resulting 
relationships are often inconsistent due to the plethora of factors influencing the measurement of 
ECa, confounding their interpretation (Corwin and Lesch, 2003; Jaynes et al., 1995). This 
uncertainty is not well understood, however, as previous studies trying to quantify this 
relationship have had limitations because of crop types (i.e. the crop was too tolerant of the soil 
properties affecting growth to make a strong correlation), or a mismatch between the dominant 
factors affecting yield and the dominant factors affecting ECa readings. The objective of this 
study was to model crop relative and absolute yield using traditional and alternative approaches, 
comparing ECa and ECe as predictors, observing the potential of each method used as a practical 
yield prediction tool. To this end, we pursued an observational experiment in Swink, Colorado 
(United States) where maize yield, and soil salinity data were used with salinity tolerance models 
to estimate yield over the study region. 

 
MATERIALS AND METHODS 

 
Study Site Description 

Soil salinity as an issue in the Lower Arkansas River Valley (LARV) in southeastern 
Colorado originated in the 1970s due to the increase in river diversions for the use of irrigation 
water, a lack of efficient irrigation systems (which leads to a severe over application of water), 
and a decrease in the use of groundwater as a source for irrigation.  These practices have led to 
an increase in the height of the water table within the LARV, pushing salts up into the root zones 
of many crops (Gates et al., 2002). Salts have negative impacts on crop yields throughout the 
valley; research and intervention are needed to develop more sustainable water use practices. 

A sub-region of the LARV, called the Fairmont Drainage District (FDD), (37°58'56.2" N; 
103°38'38.5" W; Error! Reference source not found.), was identified as a suitable area of 
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study for observing and quantifying the magnitude of salinity effects in gypsiferous soils. The 
FDD itself refers to an area of 200 hectares having a drainage tile network installed in the early 
20th century as a result of the Colorado Drainage District Act (CO Rev Stat § 37-28-101).  The 
intent of installing drainage tiles in the FDD was to reduce waterlogging caused by a shallow 
water table. Despite this, salt presence continues to negatively affect the agronomic systems in 
the region. 

The FDD contains approximately 20 different fields averaging 10 ha each.  In this 
context, field is defined as a homogenously managed piece of land devoted to the growth of a 
singular crop for commercial value. The dominant crops in the region consist of alfalfa 
(Medicago sativa L.) with 65% coverage, maize (Zea Mays L.) with 20% coverage, and winter 
wheat (Triticum aestivum L.) with 10% coverage. The remaining 5% of land is fallow or 
rangeland (not harvested for economic value). Irrigation methods consist of siphon tube 
irrigation down furrows and center pivot sprinkler irrigation, with application rates varying based 
on specific field management. Soil textures range from Silty Clay Loam to Clay Loam. 

 
Electromagnetic Induction Surveys for Field Characterization of Salinity and Yield 

In 2019, EMI surveys were carried out using mobile equipment (i.e. EM38-MK2, 
TrimbleTM GPS system, and Juniper Allegro CX for datalogging) on 5 corn fields within the 
FDD prior to corn planting (approx. early May) in order to quantify salinity presence in the 
region. The EM38-MK2 provided a continuous stream of ECa measurements (one reading every 
4 seconds) at 0-0.75 m (EMh) and 0-1.5 m (EMv) depths simultaneously. This averaged to 
approximately 500 locations of ECa measurement in each field. Model-based sampling design 
via the Electromagnetic Sampling Analysis and Prediction model (ESAP, ver. 2.35) was used in 
each field. ESAP uses a response surface sampling design (RSSD) strategy which, in essence, 
creates a 3-D surface of the ECa measurements and, based on the range and variation, selects 
locations that characterize the ECa variation while maximizing the distances between adjacent 
sampling locations (Lesch et al., 2002).  

 ESAP-RSSD was used to select 6 soil sample locations per field. At each location, soil 
samples were collected using an 8 cm diameter soil auger at 0.3, 0.6, 0.9, and 1.2 m depths. 
Gravimetric water content and a saturation extract of each soil sample were prepared to derive 
ECe using the method presented by Rhoades (1996). Deionized water was added to 
approximately 400-500 g of air-dried soil such that a saturated condition was reached. A 50-75 g 
sub sample of the paste was taken to be oven dried to determine saturation percentage (SP% or 
θg, e). Analysis of Covariance (ANOCOVA) linear regression was used to develop a calibration 
model, converting ECa into predicted ECe (Corwin and Lesch, 2017; Corwin and Lesch, 2014). 

ESAP-RSSD was used once again in conjunction with ECa survey data to determine ideal 
sampling locations for maize yield.  38 locations were identified in each field, resulting in a total 
of 190 samples.  At each location, a one meter by 0.76 m plot was sectioned off for cob 
selection.  This amounted to seven cobs per plot for yield analysis. Samples were oven dried at 
70°C for 14 days before being shucked and weighed to determine marketable yield. After yields 
were determined, Yr was calculated by averaging the top three yields (to identify a reasonable 
yield unaffected by salinity), dividing each point by this average, and multiplying by 100.  
 
Model Selection and Goodness of Fit Evaluation 

Yr was predicted using two traditional models: the modified discount function (Steppuhn 
et al., 2005) and the threshold-slope function (Maas and Hoffman, 1977), as well as two 
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alternative statistical models: a sigmoidal four parameter logistic (4PL) model, and single variate 
linear regression (Table 1). Furthermore, each model was tested using ECe and ECa as the input 
variable. 
 

Table 1. Summary of salinity tolerance models used to predict relative yield losses in the 
Fairmont Drainage District using saturated paste extract and soil bulk apparent electrical 

conductivities (ECe and ECa, respectively). 

Model Model Form Input 

Sigmoidal Four Parameter 
Logistic (4pl) Model 

𝑌"# = 𝑑 +
𝑎 − 𝑑

1 + *𝑥𝑐-
. ECe, ECa 

Modified Discount Function 𝑌"# =
1

1 + * 𝐶𝐶01
-
234(6789)

 ECe, ECa 

Threshold-Slope Function 
𝑌"# = 1; 0 < 𝐶 < 𝐶> 

𝑌"# = 1 −𝑚(𝐶 − 𝐶>); 𝐶> < 𝐶 < 𝐶1 
𝑌"# = 0; 𝐶 > 𝐶1 

ECe 

Linear Regression 𝑌"#,B = 	𝛽1 + 𝛽	ECB +	𝜀B ECe, ECa 
Where 𝑌"# is model predicted relative yield (%), 𝑎, 𝑏, 𝑐, 𝑑, 𝑠, 𝛽1, and 𝛽E  are empirically fit 
shaping parameters, 𝐶 is average root zone salinity (can be expressed as EC, osmotic potential, 
or solution concentration), 𝐶01 is 𝐶 at 𝑌# = 0.5, 𝐶> is the maximum value of 𝐶 without yield 
reduction, 𝐶1is the lowest value of 𝐶 where 𝑌# = 0%, 𝑚 is the absolute value of the declining 
slope in 𝑌#, 𝑖 is the sample site within a field. 

 
RESULTS AND DISCUSSION 

 
The goodness of fit (GOF) for each model was evaluated in R studio using the 

HydroGOF package using root mean squared error (RMSE), root mean squared prediction error 
(RMSPE), and index of agreement (IOA).  RMSE and RMSPE were chosen to understand error 
in terms of yield units, but RMSPE is a measurement of the model’s prediction error using a 
leave-one-point out approach for cross-validation. IOA was chosen to understand model 
agreement with observations. A value of 0 indicates no fit, while 1 indicates a perfect fit. 

GOF evaluation results for each model are summarized in Table 2. ECa and ECe were 
able to predict Yr with similar accuracies, with ECe having slightly better predictions when using 
the 4PL and linear regression models. This might be explained by the susceptibility of ECa being 
biased easily by other inter-field variable edaphic properties, such as moisture or texture, 
whereas ECe is a more direct measure of salinity. The 4PL model resulted in the best GOF 
measurements for both ECa and ECe, and is shown to be useful in predicting Yr. Furthermore, it 
is shown that the RMSE and RMSPE values generated are small enough to indicate that the 
model could be viable for sub-regional yield mapping and informing management decisions. 

 
Table 2. Summary of goodness of fits results using saturated paste extract and soil bulk apparent 

electrical conductivities (ECe and ECa, respectively) to predict relative yield losses (Yr; %). 
 

Input RMSE RMSPE IOA 
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Model Variable % % n/a 
4PL ECa 16.71 17.02 0.74 
Modified Discount ECa 21.37 21.48 0.71 
Linear Regression ECa 18.06 18.29 0.66 
4PL ECe 14.37 14.70 0.84 
Modified Discount ECe 24.01 24.12 0.70 
Linear Regression ECe 15.30 15.47 0.89 
Threshold-Slope ECe 18.43 n/a 0.75 
Where 4PL is sigmoidal four parameter logistic model, RMSE is root mean squared error, 
RMSPE is root mean squared prediction error, and IOA is index of agreement. 

 
Visual fitting of the 4PL model with both ECa and ECe inputs compared to observed Yr is 

shown in Figure 1. Although the 4PL model captures the general trend of the data well, much 
variability exists around each Yr prediction. This may be due to variability around confounding 
factors resulting in yield loss outside of soil salinity.  Some of these factors include i) differences 
in maize variety salinity and drought tolerance, ii) differences in field-to-field irrigation and 
fertilizer management, and iii) spatial differences in soil physiochemical properties. The fitted Yr 
-ECe regression relationships, however, indicate that the threshold ECe value at which significant 
maize yield loss commences for these gypsum soils is approximately 2.5 dS/m, which is 
markedly higher than the 1.7 dS/m threshold  reported for halite soils by Maas and Hoffman 
(1977). 
 

 
Figure 1.Relationship between a) relative yield % (Yr) and bulk apparent soil electrical 

conductivity (ECa; mS/m) and b) Yr and soil saturated paste extract electrical conductivity (ECe; 
dS/m). Each graph is fitted with a sigmoidal four parameter logistic model, shown in blue. 

In summary, this study provides strong evidence to suggest that using ECa as a predictor 
for yield losses can be both useful and easily scalable to large areas if it is known that salinity is 
the dominant yield inhibitor prior to model generation. Additionally, it indicates that ECe may 
also be used, but comes with additional labor and cost due to the nature of current soil salinity 
mapping methods. However, if ECe can be obtained, it is possible that a calibration might be 
more temporally stable (unlike ECa, which would require annual re-calibration) because little 
changes are seen with ECe over short periods of time with consistent land management. 
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