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ABSTRACT 
 
Uniform nitrogen (N) fertilizer applications across entire fields have been shown to be 
inefficient. Recent advances in agricultural technology have led to the development of active 
remote sensing equipment that can be used to detect crop biomass and potentially be used to 
improve N fertilizer application rates. The objective of this study was to evaluate the 
effectiveness of using a hand-held active remote sensing instrument to estimate yield potential in 
irrigated corn. This study was conducted over four site years on two irrigated corn fields in 
Eastern Colorado. At the eight-leaf crop growth stage, the GreenSeeker™ active remote sensing 
unit was used to measure red and near infrared reflectance of the crop canopy. The crop was 
hand-harvested at physiological maturity. Normalized difference vegetation index was calculated 
from the reflectance data and normalized by dividing by the number of days from planting to 
sensing. Regression analysis was used to model grain yield. Cross validation was used to validate 
regression models. Grain yields ranged from 5 to 24 Mg ha-1. Coefficient of determination of the 
models for each site year ranged from 0.10 to 0.76. Exponential models were found to fit the 
individual site year data best. Site years I and III were modeled and cross validated using site 
years II and IV. The coefficient of determination of the best fit model for site years I and III was 
0.54. An exponential model was determined to be the best model for predicting grain yield. 
Results of this study show that active remote sensing has potential to be used for accurately 
predicting grain yield in irrigated corn. 
 

INTRODUCTION 
 

Nitrogen use efficiency (NUE) in the United States is alarmingly low, especially in cereal 
crops, which have an estimated NUE of only 33% (Raun and Johnson, 1999). Low NUE in 
crops, if not improved, could have dramatic impact on food supplies and land-use worldwide 
(Frink et al., 1999). Scientists have realized the importance of improving crop NUE (Raun and 
Johnson, 1999), and hence have focused much research on this global problem. 
Conventional corn (Zea Mays L.) crop fields in the United States and else-where are treated 
uniformly with regard to nitrogen (N) fertilizer application (i.e., the fields received one N 
application rate). Over the last ten years scientists have demonstrated, that uniform application of 
N fertilizer is not the most efficient practice (Mulla and Bhatti, 1997; Khosla and Alley 1999; 
Koch et al., 2004). Nitrogen fertilizer applications that take into account the variability of the 
crop’s N needs could lead to increased NUE and thus more economically and environmentally 
sound farming practices (Mulla and Bhatti, 1997; Khosla and Alley, 1999). Scientists and 
engineers have investigated numerous techniques of characterizing the spatial variability of crop 
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productivity potential and N status in order to facilitate variable rate application of N fertilizer, 
however there is yet to be a consensus on which method is best. 

Studies have shown that remotely sensed imagery can provide more soil and crop 
information than conventional methods (Demattê et al., 2001) and is a rapid means to infer 
multiple crop parameters including: photosynthetic capacity, productivity, and potential yield 
(Peñuelas et al. 1994; Thenkabail et al. 2000; Ma et al. 2001; Raun et al. 2001; Báez-González et 
al. 2002). Although use of remote sensing imagery is promising, there are drawbacks including: 
cost, weather, timing, and remote sensing imagery often requires sophisticated computer 
programs and skilled labor to interpret and prepare the image for use. However, active remote 
sensing systems (i.e., a sensor that has its own source of light energy) that can be mounted on a 
fertilizer application boom and/or tractor is a very attractive alternative to the traditional soil and 
plant sampling methods as well as aerial/satellite-based remote sensing. 

The objective of this study was to evaluate the effectiveness of using a hand-held active 
remote sensing instrument to estimate yield potential in irrigated corn. 

 
MATERIALS AND METHODS 

 
Study Sites 

This study was conducted over four site years (two fields over two consecutive growing 
seasons). Sites were located in northeastern Colorado, USA under a continuous maize cropping 
system. Site years I and III were furrow irrigated, while site years II and IV were center-pivot 
sprinkler irrigated. 

Site years I and III were on a field mapped as having Fort Collins Loam (fine-loamy, mixed, 
superactive, mesic Aridic Haplustalf). Site year III and IV was located on a field that was 
mapped as having Albinas loam (fine-loamy, mixed, superactive, mesic Pachic Argiustoll), 
Ascalon fine sandy loam (fine-loamy, mixed, superactive, mesic, Aridic Argiustoll), and Haxtun 
loamy sand (fine-loamy, mixed, superactive, mesic Pachic Argiustoll) soil series. 

Maize was planted at 77,000 plants ha-1 for site years I and III and 84,000 plants ha-1 for site 
years II and IV. Row spacing was 76 cm for all site years. Site years I and II were planted with 
Garst hybrid 8802 and site year III and IV were planted with Pioneer hybrid 34K77. 
 
Experimental Procedure 

Experimental plots were randomly located within each field and replicated twelve times. 
Each experimental plot was 46.2 m2 (15.2m by 3.02m) in size. Crop reflectance measurements 
were acquired at the eight-leaf crop growth stage using a GreenSeeker™† hand-held active 
remote sensing unit. The GreenSeeker™ hand held active remote sensing unit† (NTech 
Industries, Inc., Ukiah, CA, USA) measures the reflectance of a given crop over a 0.61 x 0.61-m 
area when the unit is positioned between 0.6 and 1.0 m above the target area.  The sensor utilizes 
high intensity light emitting diodes (LED) to emit light in the red (650 ± 10 nm) and near 
infrared (770 ± 15 nm) bands.  From these measurements, the normalized difference vegetation 
was calculated (NDVI) (Eq. 1). For each site year, NDVI data were normalized by dividing the 
NDVI by the number of day from planting to sensing. The normalized NDVI, or in-season 
estimated yield (INSEY) is essentially an estimate of accumulated biomass (Stone et al., 1996). 
 
 

 
† Disclaimer: mention of trade name does not imply endorsement by either the authors or Colorado State University. 
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NDVI = (near infrared –red)/(near infrared + red)   [1] 
 

At the crop’s physiological maturity (R6 crop growth stage) above-ground biomass samples 
were collected for grain yield analysis. One biomass samples was randomly located and collected 
from each experimental plot. Biomass samples consisted of two 1-m long sections of a corn row. 
Biomass samples were then analyzed for yield volume. Grain yield volume calculated as Mg ha-1 
at 155g kg-1 moisture. 
 
Data Analysis 

Statistical analysis was performed using SPLUS 6.1 (Insightful corp., Troy NY, USA). 
Regression analysis was used to develop models relating INSEY to harvested grain yield for 
each site year. Data were then pooled by growing season. Data from the first growing season 
(site years I and III) were used for model building, while data from the second growing season 
(site years II and IV) were used for model validation. INSEY and grain yield data collected 
during the first growing season (site year I and III) were pooled and used to develop a model for 
estimating grain yield potential. Reflectance data collected during the second growing season 
(site year II and IV) was entered into the model to provide yield estimates. Yield estimates were 
then compared to observed yield. Mean squared error of prediction (MSPR) and model bias were 
calculated to assess the performance of the model. A two-sided t-test was used to test if the 
estimate bias was significant. Inman et al. (2005) provide a detailed discussion of the equations 
and procedures used to develop potential yield estimates. 

 
RESULTS AND DISCUSSION 

 
Grain yields were variable across sight years, ranging from 5 to 24 Mg ha-1. Site years I and 

III were lower yielding than site years II and IV, likely because of the irrigation practices and 
lower planting density. 

Scatter plots of INSEY versus observed and predicted grain yield for site year four is 
presented in Figure 1. Across all sites, the relationship between INSEY and grain yield was 
variable, with R2 values ranging from 0.10 to 0.76. An exponential fit relating INSEY to yield 
has been proposed for both wheat and corn (NUE Web, 2005). In our regression analysis of the 
individual site years, we tested several different models (data not shown). However, the 
exponential fit was found to be the best fit-model in all four cases. Similar results were reported 
by Thenkabail et al (2000). In their study, it was reported that in most cases, non-linear 
exponential models were best for explaining variability between spectral vegetation indices and 
crop biophysical parameters across several agricultural crops (Thenkabail et al., 2000). 

With the exception of site year III, regression models fit the data best at lower INSEY 
values. Variability in observed grain yield is greatest at high INSEY values. This observation 
could be because NDVI is less sensitive to changes in canopy closure, leaf area index, and other 
biophysical parameters at high NDVI values. 
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Figure 1. Scatter plot of INSEY versus observed yield (closed circles) and predicted yield (solid 
line) for site year IV. Regression model, coefficient of determination, and p-value are shown. 

 
Regression analysis and cross-validation results are presented in Table 1 and Figure 2. 

Using site years I and III, regression analysis was used to investigate the different models. From 
the models tested, the linear and exponential models had lowest mean square error of prediction 
(MSPR), indicating that the model developed from site years I and III provided yield predictions 
that were close to the observed yield values for site years II and IV. The quadratic model had the 
lowest MSE, however the MSPR was high and the model bias was statistically significant. 
Overall, the exponential model was the best model tested for predicting grain yield. These results 
agree with (Thenkabail et al., 2000). To be sure, these results do not indicate that two site years 
of data are adequate for developing a yield prediction model using the GreenSeeker™ optical 
sensor. Our results do however, indicate that active remote sensors such as the GreenSeeker™ 
have potential to be used to develop models to effectively predict grain yield. 
 
Table 1. Regression analysis and cross-validation results. The regression model, mean squared 
error (MSE) from the model building data set, coefficient of determination (R2), mean squared 
error of prediction (MSPR), model bias, and the p-value of the bias are listed. All models listed 
were significant at p < 0.05. 
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Model R2 MSE MSPR Bias Bias P 
Ŷ (Mg ha-1)= 2.92 e(163.64 (INSEY)) 0.54 5.37 7.69 1.01 ns 
Ŷ (Mg ha-1) = -0.27 + 1599.3 (INSEY) 0.21 4.94 4.54 1.38 ns 
Ŷ (Mg ha-1) = 84.5 – 17250 (INSEY) + 1016987.9 INSEY2 0.48 4.31 251.5 6.10 0.001 

Ŷ = 5.03 e (85.4 * INSEY) 

R2 = 0.76 
P < 0.05 
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Figure 2. INSEY versus yield for site years II and IV. Graphs show observed yield (closed 
circles) and predicted yield (solid line). Data from site years I and III were used for model 
building; data from site years II and IV were used for model validation. 
 

CONCLUSIONS 
 

In this study, the ability of the GreenSeeker™ active remote sensing unit to predict grain 
yield in irrigated corn was evaluated. Results indicate that an exponential regression model is 
best for predicting yield using the GreenSeeker™. Similar findings have been reported in the 
literature (Thenkabail et al., 2000). Overall, our results are encouraging with regard to using the 
GreenSeeker™ to predict grain yield in irrigated corn. More research is needed, however to 
refine the yield models for irrigated corn. 
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