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INTRODUCTION 
 

Traditionally, soil sampling has relied on the approach of collecting multiple cores (or 
sub-samples) from the entire area of interest (e.g., a field), and then combining them into a single 
soil sample for analyses.  Samples were collected from throughout the area with recognition that 
soil fertility varied spatially.  Where greater spatial variability was anticipated, size of sampling 
area usually was reduced to provide a better estimate of soil fertility.  Unfortunately, as Beckett 
and Webster (1971) pointed out, mean-estimation accuracy of localized soil properties may not 
dramatically improve as the sampling area size is reduced (small gains for large increases in 
cost).  Coupled with the fact that, varying fertilizer rates within a field has been cumbersome 
(costly) due to farming patterns and equipment limitations, it should not be surprising that soil 
samples traditionally have been collected over large areas such as a whole field. 

Eventually, the importance of statistically characterizing spatial relationships within a 
field became known.  In particular, if the variogram (mathematically relates degree of correlation 
to distance of separation) were known, a geostatistical technique called kriging could be used to 
accurately estimate localized soil properties with fewer soil samples (large gains for small 
increases in cost) than by using classical statistics along with traditional sampling over 
sufficiently small sampling areas.  Unfortunately, the variogram is never known with certainty; 
rather, it must be estimated.  McBratney and Webster (1983) point out the obvious economic 
problem.  That is, although the variogram can determine optimal sample spacing, the variogram 
itself often cannot be determined without intensive soil sampling.  Moreover, a variogram for 
one field or soil property typically is not appropriate for another field or soil property. 

Technological advances in fertilizer application equipment and in data handling and 
analysis have greatly increased the demand for site-specific soil sampling and fertilizer 
recommendations.  Despite potential problems linking geostatistical techniques to practical 
applications, it seems that “point-based plus interpolation” grid soil sampling has emerged as a 
common practice in site-specific soil fertility management.  Nonetheless, researchers continue to 
wonder about the most appropriate interpolation technique.  More importantly, that issue can be 
even more disconcerting for practitioners, where profits can hang in the balance.  Such decision-
makers often resort to a combination of two approaches: 1) select the interpolation technique that 
provides the most visually appealing map by some subjective assessment, or 2) trust the 
interpolation software’s default algorithm with its default parameters.  Also, the point 
sampling/interpolation issue is clouded further with questions about the radius of soil core 
collection.  Consequently, some site-specific practitioners are beginning to ask whether 
traditional area-based soil sampling procedures might have an inherent advantage to grid soil 
sampling.  While this question is quite relevant to management decisions that impact the 
profitability of site-specific soil fertility management, empirical data for site-specific yield 
response to soil fertility variables (e.g., N and P) do not exist, so adequately answering this 
question relies on data simulations that accurately represent “real world” data.  Our objective 
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was to use simulated field data to evaluate expected returns to two methods of soil sampling: 1) 
collecting multiple sub-samples in a small radius near a cell centroid and interpolating between 
sampling locations, and 2) collecting multiple sub-samples from throughout the sampling area 
and using the soil test results from this sample to represent the entire sampling area (similar to 
whole-field sampling except on some smaller unit, e.g., 1-acre cells).  This evaluation is 
completed in the context of a western Kansas non-irrigated crop producer managing N and P in a 
corn-fallow-wheat cropping sequence.  As a side issue, we briefly examine the expected returns 
to site-specific over field-scale soil sampling, and whether soil-test proxy data (e.g., electrical 
conductivity, EC) might provide a feasible substitute for grid soil sampling. 
 

METHODS 
 
Yield models 

A mathematical function characterizing expected yield response to fertilizer and fertility 
is crucial to any economic analysis of fertilizer decisions.  We use Kansas State University 
(KSU) fertilizer recommendations (Leikam, et al., 2003) in conjunction with procedures outlined 
in Kastens et al., 2003a, 2003b) to generate wheat and corn yield response models from 10000 
randomly simulated data points.  KSU’s N recommendations depend on yield goal, a 2-foot 
profile soil test N measure (STN), and percent soil organic matter (OM).  KSU’s sufficiency P 
recommendations depend on yield goal and a measure of soil test P (STP).  Consequently, each 
simulated data point is comprised of a measure of crop yield, OM, STN, and STP.  The 
asymptotic plateau yield model for each of corn and wheat is specified as 

              [1] 

where Yield is the expected crop yield in bu acre-1 conditional upon the causal factors 
specified on the right-hand side, and where the B expressions (parameters) denote numerical 
constants to be determined.  B0 is the model’s asymptotic yield plateau, which is the level of 
yield expected to be approached as all causal factors approach their yield-maximizing levels.  
The term exp denotes the exponential function.  The terms fertP and fertN denote fertilizer P in 
lb P2O5 acre-1 and fertilizer N in lb N acre-1, respectively; STN is soil test N in lb N acre-1; STP is 
soil test P as ppm Bray P1; and OM is percent soil organic matter.  The term Z represents 
unaccounted-for yield causal factors – a variable dynamically created during estimation that 
equals the simulated yield at each data point, divided by the maximum yield across all 10000 
Yield values for a crop. 

Simulated data used to estimate the parameters of the yield models are based on the 
following means and coefficients of variation (CV):  corn yield (75, 25%), wheat yield (45, 
25%), STP (16, 50%), STN (40, 50%), and OM (1.6, 25%).  As described in Kastens et al., 
2003a, certain economic assumptions also are needed by the procedure.  We use a bank interest 
rate of 8%, an income tax rate of 40%, and prices as follows:  wheat $3.20 bu-1, corn $2.32 bu-1, 
fertP $0.24 lb-1, and fertN $0.21 lb-1.  The simulated data used to estimate the yield models were 
simply points that had no reference to space.  But, to make meaningful inferences regarding soil 
sampling schemes, spatially-dependent soil test data are needed.  Then, those soil test data, along 
with model-predicted yields and model-generated optimal fertilizer rates, can be used to 
characterize finitely-sized land areas over time to draw economic inferences. 
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Spatial structure 
Though this research might apply to different scales, our basic spatial structure is a 

square 100-acre field managed by the operator as 1-acre units.  That is, we assume that the 
operator can accurately measure crop yield and apply fertilizer at the 1-acre scale (1 rate for each 
acre for each crop).  Though 1-acre crop management is assumed, finer- and coarser-scaled data 
are considered in making the 1-acre management decisions. 

Each acre is considered overlain with an 8x8 grid, making 64 cells per acre.  Thus, the 
100-acre field, containing 6400 such cells, is considered overlain with an 80x80 grid.  An 80x80 
grid has a total of 81(81 nodes (points where grid lines intersect).  Each of the 6561 nodes is a 
point in space from which distances to other points can be calculated, and to which simulated 
variable values are assigned, which means that a simulated spatially dependent variable will 
contain 6561 observations.  Distance is considered measured in units equal to the length of one 
cell side (Dunits).  Hence, since an acre contains 43560 ft2, in this 1-acre framework, 1 Dunit is 
435600.5/8 = 26.1 ft.  Finally, because points (nodes) are presumed measured but areas (1-acre 
cells) are presumed managed, means across nodal values depict area values of interest. 

Each acre contains 49 interior nodes (excludes border nodes).  The mean of simulated 
values at these 49 points, say for STP, is considered to be the acre’s true STP mean (which is 
used in simulating the acre’s true yield described later).  The value at the acre’s center node is 
the acre’s centroid value.  Starting at the node 1 Dunit inside the two borders of an acre’s corner, 
and then proceeding to increments of 2 Dunits in the x and y direction, results in selecting 16 of 
the acre’s 49 interior nodes.  The mean of values at these 16 equally-spaced  nodes is considered 
to be an estimate of the acre’s true mean (e.g., representing 16 equally-spaced soil cores that are 
bulked to form a single soil sample).  To examine coarser-scaled soil sampling, we also consider 
a 4-acre block, with a corresponding 4-acre centroid and a corresponding 16-point 4-acre 
composite. 
 
Simulating spatially-dependent data 

In geostatistics, the spatial dependency of one point on another is considered related to 
distance and direction, and often to only distance (the isotropic case, and the only one considered 
here).  Then, for a given distance (h) that two points (i and i+h) separate each other, one might 
plot the values associated with each such ith pair in x-y space.  Then, the moment of inertia about 
the x = y line for the n points corresponding to that hth distance is calculated as 

                  [2] 

Computing ((h) for successively greater h, followed by plotting ((h) against h, results in a 
graphical representation of spatial dependency referred to as a variogram.  For kriging, graphical 
variogram data are generalized using one of several functional forms (only certain classes of 
functions allow the necessary mathematics).  In variogram functions, again represented as ((h), 
the y-intercept is referred to as the nugget value.  Strictly speaking, the calculated y-intercept is 
replaced with 0 for h exactly equal to 0; thus, ((0) = 0.  This represents an expected discontinuity 
due to the small-scale variability expected in practical applications.  An example of such a 
discontinuity is that, even ignoring laboratory error, two immediately adjacent soil samples likely 
will have significantly different test values.  At some sufficiently high h (the range), variogram 
functions plateau (the sill) because spatial dependencies are expected to become 0.  Assuming 
isotropy, the function’s sill is expected to equate to the variance (F2) of the data.  Nugget 
information often is expressed in terms of the nugget-to-sill ratio (N/S), with lower N/S values 
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associated with more spatially continuous (dependent) data.  Finally, because of the sill = F2 
assumption, variogram functions readily can be recast as correlogram functions, D(h), which 
depict the expected correlation between data points based on separation distance.  Beyond the 
range, point-to-point correlation is assumed to be 0. 

To simulate data, we use a variant of the sequential multivariate Gaussian simulation 
exercise described by Deutsch and Journel (1998), where a variable value is drawn conditional 
upon all already-drawn values from other variables, so that the end result approximates the 
desired correlation matrix among the variables.  In this spatial setting, “other variables” are 
actually other values of the same simulated variable, where the desired correlations depend on 
separation distance.  That is, using a random sequence, each of the 6561 points in the field is 
visited and a value established based on already-simulated values, and so on.  The expected 
correlations depend on a 6561x6561 distance matrix constructed so that the ijth matrix value is 
the distance between points i and j.  The correlogram function converts the distance matrix to a 
correlation matrix. 

In spatial interpolation, and in simulation, only “nearby” points are allowed to impact a 
point of interest.  Thus, a search radius must be selected, which should be somewhat consistent 
with the range that was assumed in the underlying correlogram function.  Thirty grid-sampled 
Corn Belt fields studied by Kravchenko and Bullock (1999) had an average sampling grid of 207 
ft (about 1 acre).  Also, they suggested that the traditional interpolation technique is IDW4 
(inverse distance weighted to the fourth power) and a 12-point search.  We too assume that 
practical sampling points in our field might be the 1-acre centroids.  Thus, a 12-centroid search 
would mean a search radius greater than 16 Dunits.  We arbitrarily used 18 Dunits (about 470 
feet) as both our search radius and underlying simulation correlogram function range. 

To ensure the believability of simulation results, it should be a goal of spatial data 
simulation to preserve certain features expected of actual data – had it been possible to 
empirically observe such data.  One such feature is the N/S ratio.  Kravchenko (2003) notes that 
the majority of empirical work in the literature reports variograms with N/S ratios ranging 
between 0.1 and 0.6.  A second feature is typical accuracies reported when IDW methods are 
used to interpolate between practically scaled samples.  A common measure of accuracy is G = 
(1&MSE/MSEavg) (100, where MSE is the mean square error for some predictive method, and 
MSEavg is the MSE of using the average value as a predictor everywhere (i.e., the population 
variance).  G depicts the percent improvement in accuracy over simply knowing the average 
(negative values suggest the predictive method is worse than simply using the average).  Using 
12-centroid IDW4 predictions, Kravchenko and Bullock’s (1999) 30 data sets resulted in an 
average G value of 21.2 for soil test P and 20.8 for soil test K.  Although not directly comparable 
since they were derived from an optimal search radius rather than a 12-point one, the 15 Kansas 
data sets underlying work reported by Kastens and Staggenborg (2002) resulted in an average G 
value of 20.8 for soil test P using IDW4.  Consequently, our simulations target similar predictive 
accuracies. 

In simulating the data, the typically-used exponential and spherical variograms did not 
adequately meet the desired accuracy criteria.  In particular, for the resultant IDW4 predictions 
of 1-acre centroids, to achieve a G value around 20 would have required a N/S ratio that was less 
than 0.1, implying an extremely high degreee of spatial continuity at close distances.  On the 
other hand, a simple linear variogram easily met the desired criteria.  For distances (h) less than 
the range, the associated linear correlogram is 
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                  [3] 

where, given a range (we use 18 Dunits throughout), the only parameter requiring 
modification to depict different degrees of spatial continuity is C1.  In Eq. [3], it is easy to see 
that the y-intercept is C1, implying that, as h approaches 0, the correlation among data pairs 
approaches C1.  The N/S ratio is 1&C1.  Though not shown, that D(h) = 0 when h > range is 
implied. 

To sufficiently cover the degree of spatial continuity expected of actual data, our 
simulations consider C1 values of 0.9, 0.8, 0.7, 0.6, and 0.5, corresponding to N/S ratios ranging 
from 0.1 to 0.5.  To ensure adequate statistical confidence in our randomization-based 
simulations, 100 standard normal vectors (6561 observations each) are simulated for each C1, 
representing 100 alternative data characterizations (or maps) for each degree of spatial 
continuity.  The standard normal vectors are transformed to variables of interest by using the 
means and CV’s discussed in the Yield models section.  In particular, for a given N/S and a 
given variable, say STP, a randomly-selected 20 of the 100 possible vectors are drawn (selecting 
20 was a result of trading off computer time against confidence in results).  Then, 20 of the 100 
vectors are drawn for STN, followed by OM.  The end result is 20 alternative 3-variable data sets 
to be used in the economic analysis of soil sampling schemes – for each N/S ratio considered.  In 
this setting, the 3 variables are considered independent of each other, but contain the same 
degree of spatial continuity. 
 
Simulating a crop production framework 

In this research, because the managed unit is 1 acre, inferences (predictions) need to be 
made about average soil test values for each acre.  How such information is collected (e.g., 
through soil sampling) and used (e.g., through spatial interpolation) is referred to as a soil 
information system, or SIS.  An SIS leads to a unique N and P management strategy which 
results in a unique set of fertilizer rates and yields, and hence changes in STP and STN over time 
(OM is assumed constant over time).  To capture a sufficient part of this dynamic system, we 
consider 10 corn-fallow-wheat crop sequences (20 crops, 30 years) for each SIS examined. 

Given an N/S ratio, each of the 20 soil-test data sets provides what we consider to be true 
soil tests (STP, STN, and OM) in year 1 for each of the 6561 points in the field – hence, also the 
100 true 1-acre soil tests (mean of an acre’s 49 interior points), and so on.  However, each SIS 
will result in a different evolution of true STP and STN in subsequent years.  Regardless of the 
presumed soil sampling density, a particular SIS results in a predicted soil test level for each 
acre.  Setting the partial derivative of yield with respect to fertilizer rate in the yield model (Eq. 
[1]) equal to the fertilizer/crop price ratio results in a posited optimal (hence, the presumed 
actual) fertilizer N and P rate for each acre.  It should be noted that, though the fertilizer rate 
calculation depends on a predicted (not necessarily the true) soil test for each acre, such 
predictions could be the same everywhere e.g., when only a single field soil sample is used to 
generate a uniform fertilizer rate for the whole field. 

Given the true soil test values for an acre (49-point means) and fertilizer rates, the yield 
model determines the expected 1-acre yield in a given scenario.  However, to establish what we 
consider to be the true yield, a random error is added to model predictions.  The error is 
structured so that only around 25% of the 1-acre yield variation (across both time and space) is 
explained by fertilizer and soil test.  Also, to depict random annual weather events, a random 
annual yield shifter (a year “dummy”) is included (not shown in Eq. [1]) that proportionately 
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adjusts each acre’s yield across all SIS scenarios for a given year.  The year “dummy”is 
structured so that its information, together with that of fertilizer and soil test, will explain about 
67% of the yield variation.  Of course, fertilizer rates are determined using only expected or 
average year-dummy information, since it would not be known until after the year is over. 

For a given acre, the true STP and STN values are assumed to evolve in a nutrient 
budgeting framework, where fertilizer above or below crop-removal levels changes soil tests 
through a transformation rate.  For P, we use the transformation function set forth in Kastens, et 
al., 2003, where corn and wheat crops remove 0.33 and 0.50 lb P2O5 bu-1, respectively (Leikam, 
et al., 2003).  To obtain true 1-acre STP values for the next year, an error was added to 1-acre 
crop-removal based STP predictions, reflective of expected crop-removal-based STP prediction 
accuracy.  In particular, the error was selected such that predictions would have an R2 of around 
0.50.  Though some calculations depend on true STP at every data point, true fertilizer rates and 
true crop yields are simulated for only 1-acre areas.  Consequently, true 1-acre STP was 
converted to true all-points STP by multiplying last year’s point values times the ratio of the new 
1-acre measure to last year’s 1-acre measure (a simple proportional proration).  KSU N 
recommendations at 1.6% OM, and yield goals 10% above the 75 and 45 bu acre-1 expected corn 
and wheat yields, imply crop removal rates of 1.17 and 2.04 lb N bu acre-1 for corn and wheat, 
respectively.  The errors added to 1-acre crop-removal-based STN predictions to determine true 
next-year STN are chosen to result in an R2 of 0.20 (assumes some, albeit poor, prediction 
accuracy for STN). 
 
Table 1.  Description of soil information systems (SIS). 

SIS Method of assigning soil test results to 1-acre cells 
1Aarea 16-point 1-acre composite 
4Aarea 16-point 4-acre composite 
1Apoint 1-acre centroid 
4Apoint 4-acre centroid 
1AID4 1-acre centroid with IDW4 interpolation 
4AID4 4-acre centroid with IDW4 interpolation 
Farea 16-point 100-acre composite 

EC 49-point 1-acre composite based on EC proxy 
 

Eight SIS’s were considered in this research and are summarized in Table 1.  1Aarea (1-
acre area) assumes each acre’s soil tests are predicted via a single 16-point composite soil sample 
taken from each acre (each sampling point always assumed to be multi-core).  4Aarea assumes a 
4-acre block is sampled with a 16-point composite soil sample from the area; each acre in the 
block is assigned the same soil test value.  1Apoint assumes each acre’s soil tests are predicted by 
assigning a single-point soil sample (the centroid) to the whole acre.  4Apoint assumes each 4-
acre block’s soil test is predicted using only the 4-acre centroid soil sample.  1AID4 assumes 
IDW4 is used to interpolate between soil samples taken from 1-acre centroids in the search area.  
The 49 interior points of each acre that are predicted with IDW4 are averaged to provide a 1-acre 
prediction.  4AID4 assumes similar calculations, except that only the 4-acre centroids in the 
search area are used in the IDW4 interpolations.  To allow comparisons with traditional field-
scale sampling, we included Farea (field area), where each acre is assigned the 16-point field-
composite soil sample value.  Finally, we consider a proxy for soil-test data by simulating 
predictive variables for each crop with R2 values of 0.20, 0.0625, and 0.20 for STP, STN, and 
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OM, respectively (all 6561 points are predicted; an acre measure is the 49-interior-point mean).  
The correlations assumed for the proxy variables are taken from EC and soil test data from a 
study farm in northwest Kansas; hence, this SIS is called EC.  An annual Farea soil sample is 
assumed to accompany the EC data. 
 

RESULTS 
 

To demonstrate sufficient coverage of the expected degree of spatial continuity arising 
from previous research, row 13 of Table 2 reports the 20-data-set average G statistic for STP 
associated with IDW4 interpolation – for each N/S value considered (i.e., predicting each 
centroid value using interpolation among other centroids in the range, vs. using the 100-centroid 
average).  G statistics for STN and OM were comparable.  Clearly, given that the 18-Dunit range 
assumption is appropriate, these G values and N/S ratios should provide sufficient coverage of 
the span of spatial continuity possibilities believed possible for western Kansas soil tests.  The 
N/S = 0.3 or N/S = 0.4 simulations likely are the closest to what might be expected in real data. 
Economic results of this research are presented in rows 1-12 of Table 2 as mean differences 
between competing SIS’s, where the means are across the 20 alternative runs for each N/S ratio.  
Differences in profit were first computed as annually amortized (across 30 years) $ acre-1, and 
then multiplied by 1.5 for reporting as $ acre-1 crop-1 (since the 30 year span contains 20 crops).  
Positive table values indicate that the method named first in that row was more profitable.  For 
example, for N/S = 0.1, 1Aarea is $0.58 acre-1 more profitable than 1AID4 (row 1), which is 
$0.27 acre-1 less profitable than 1Apoint (row 2). 

The additional benefit to using a 1-acre area soil sample over a “1-acre point sample with 
IDW4 interpolation” is positive for all spatial dependencies considered (row 1).  This indicates 
that, ignoring differences in soil sampling and analysis costs, area sampling is more profitable 
than point-with-interpolation sampling.  On the other hand, row 2 of the table shows that, using 
1-acre centroids, the manager probably would be better off assigning the centroid value to the 
acre rather than using IDW4 interpolation.  This was unexpected.  Apparently, given the 
simulations, more weight yet should be given to nearby points – suggesting either a smaller 
search area or a higher-powered inverse distance interpolation method.  Consequently, row 3 
shows that the additional gains to using a 1-acre area sample over merely using the centroid point 
directly are modest.  On the other hand, row 6 shows substantial gains to area sampling if the 
sample is for 4 acres rather than for 1 acre.  Now, interpolation does result in small gains over 
merely using the centroids directly (row 5).  Regarding the apparent trends across columns in the 
table, only those in rows 1 through 3 are statistically different from 0; they support the 
theoretical expectation that less spatial continuity should lead to increased profits for area- over 
point-based soil sampling. 

For convenience, rows 7 to 9 report the corresponding averages of 1-acre and 4-acre 
sampling differences – perhaps as an indicator of what might be expected of 2.5-acre sampling, 
the most typical resolution used by practitioners.  Row 8 shows virtually no gains to using 
interpolation when sampling by centroid, especially if the additional software and computer-time 
costs associated with interpolation would be assessed.  Assuming that the average of the N/S = 
0.3 and N/S = 0.4 columns provides the best guess of real-world data, row 9 suggests a benefit to 
area- over point-sampling of about $2.18 acre-1.  The additional costs for acquiring such a gain 
would be associated with the additional labor required of walking or driving to the multiple spots 
in the sample area rather than simply pulling cores around the centroid.  Based on conversations 
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with a Kansas provider of grid soil sampling, our best guess of the additional time required of 
2.5-acre area- over point-sampling, assuming area cores would not need to be geo-referenced, is 
11 minutes per 2.5-acre cell, or 4.4 minutes acre-1.  Using an arbitrary labor charge of $15 hour-1, 
this comes to $1.10 acre-1, which leaves a net gain of $1.08 acre-1 for area- over point-sampling. 
 
Table 2.  Twenty-run average difference in profit (yield revenue less fertilizer cost) in $ acre-1 crop-1 for competing 

soil information systems. 

  N/S Ratio (higher N/S ratios imply less spatial dependency) 
Row# SIS 0.1 0.2 0.3a 0.4a 0.5 

spatial comparisons for 1-acre and 4-acre sampling 
                                                                                                                   $ acre-1 

1b 1Aarea - 1AID4 $0.58c $0.71c $0.83c $0.92c $1.05c 
2b 1AID4 - 1Apoint -$0.27c -$0.28c -$0.25c -$0.25c -$0.23c 
3b 1Aarea - 1Apoint $0.31c $0.43c $0.57c $0.67c $0.81c 
4 4Aarea - 4AID4 $3.17c $2.50c $3.27c $3.52c $3.15c 
5 4AID4 - 4Apoint $0.41c $0.44c $0.31c $0.38c $0.58c 
6 4Aarea - 4Apoint $3.58c $2.95c $3.58c $3.90c $3.73c 

average of 1A and 4A above (perhaps indicative of 2.5 acre sampling)d 
                                                                                                                   $ acre-1 

7 area - ID4 $1.88 $1.60 $2.05 $2.22 $2.10 
8 ID4 - point $0.07 $0.08 $0.03 $0.07 $0.17 
9 area - point $1.95 $1.69 $2.07 $2.29 $2.27 

“might site-specific fertilizer management pay?” comparisons 
                                                                                                                   $ acre-1 

10 1Aarea - Farea $12.29c $11.34c $10.88c $12.18c $10.64c 
11 4Aarea - Farea $2.84c $1.74 $1.26 $2.46c $1.18 
12 EC - Farea $9.31c $8.36c $7.93c $9.26c $7.74c 

accuracy improvement for STP (compare with Kravchenko and Bullock, 1999; and Kravchenko, 2003) 
                                                                                                                        % 

13b mean STP G-statistic 44.8 37.7 26.7 19.6 4.16 
a real data are expected to fall between N/S = 0.3 and N/S = 0.4 because a G statistic between 20 and 22 is expected 
b trend across successive columns is statistically different from 0 at 0.95 confidence 
c statistically different from 0 with a paired t-test (n = 20) at 0.95 confidence level 
d statistical significance not calculated for this section 
 

Rows 10 and 11 show the benefits of grid over whole-field soil sampling.  Taking the 
average of rows 10 and 11 for N/S = 0.3 and N/S = 0.4 columns as a reasonable indicator of 
gains of 2.5-acre- over whole-field sampling, results in a benefit of $6.70 acre-1.  KSU’s soil test 
laboratory currently (2003) charges $10.50 to test N, P, and OM, which is $4.20 acre-1 for a 2.5 
acre sample.  For typical 2.5-acre grid sampling, Whipker and Akridge (2003) report a charge of 
$6.19 acre-1.  These 2 costs add to $10.39, making it clear that 2.5-acre sampling ahead of each 
crop would not be profitable.  On the other hand, soil samples might be used for more than 1 
crop, which surely is reasonable for at least STP and OM; then, grid soil sampling would be 
profitable. 

Though not shown, using inverse distance squared interpolation (rather than 4th power) 
would increase the expected benefits to area- over point-based sampling (all row-7 values in 



 67 

Table 2 would be greater).  Finally, perhaps the most surprising result uncovered in this research 
is the one associated with the simulated soil-test proxy variables reported in row 12.  Substantial 
profits would be expected from such information after accounting for costs.  For example, EC 
information can be collected for around $5.00 acre-1 and likely would be used for many years. 
 

SUMMARY 
 

From a simulation of spatially-dependent data representative of non-irrigated corn-
fallow-wheat cropping practices in western Kansas we conclude the following.  In grid soil 
sampling, modest net gains, in the order of $1.08 acre-1, are expected for area- over point-
sampling.  If only cell centroids are used in grid sampling, the benefits for using a spatial 
interpolation technique such as inverse distance are negative to small, suggesting that a manager 
might just as well assign the centroid value to the whole cell.  Grid soil sampling is expected to 
be profitable as long as soil samples can be used for two or more crops.  Using soil-test proxy 
information such as electrical conductivity, along with a field-scale soil sample for each crop, is 
expected to result in substantial profits that likely are greater than grid soil sampling profits. 
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